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We study the dependence of friction on surface roughness, sliding velocity, and temperature. Expanding on
the classic treatment of Greenwood and Williamson, we show that the fractal nature of a surface has little
influence on the real area of contact and the static friction coefficient. A simple scaling argument shows that the
static friction exhibits a weak anomaly ��A0

−�/4, where A0 is the apparent area and � is the roughness
exponent of the surface. We then develop a method to calculate atomic-scale friction between a microscopic
asperity, such as the tip of a friction force microscope �FFM� and a solid substrate. This method, based on the
thermal activation of the FFM tip, allows a quantitative extraction of all the relevant microscopic parameters
and reveals a universal scaling behavior of atomic friction on velocity and temperature. This method is
extended to include a soft atomic substrate in order to simulate FFM scans more realistically. The tip is
connected with the support of the cantilever by an ideal spring and the substrate is simulated with a ball-spring
model. The tip and substrate are coupled with repulsive potentials. Simulations are done at different tempera-
tures and scanning velocities on substrates with different elastic moduli. Stick-slip motion of the tip is ob-
served, and the numerical results of the friction force and distribution of force maxima match the theoretical
framework.
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I. INTRODUCTION

The empirical laws of friction between macroscopic sur-
faces were discovered long ago by Da Vinci, Amonton, and
Coulomb. They found that friction is �i� independent of the
apparent contact area, �ii� proportional to the normal load,
and �iii� independent of the sliding velocity �1�. Although
these laws are modified by plasticity �2�, they remain essen-
tially valid, and friction at the macroscopic level is now well
understood, for both dry rough �3� and lubricated surfaces
�4�. Nevertheless, the subject continues to be reconsidered,
particularly in connection to developments in the field of
nanotribology �5,6�, to the new experimental possibilities of
studying friction at the atomistic level opened by the atomic
force microscope �7–13�, and to the fractal structure inherent
in several surfaces �5,14–24�. The contact problem between
a plane and a rough surface is also of fundamental impor-
tance in several processes, such as printing on paper and
board �25,26�.

Macroscopic solids sliding against each other interact
mainly through many atomic-scale asperities present on their
surface. Although it is in essence a macroscopic phenom-
enon, the physics of friction thus extends over several length
scales and depends crucially on the microscopic aspects of
the problem. In this paper, we study separately two aspects,
microscopic and macroscopic, of friction.

The macroscopic collective effect of all the asperities is
measured through the friction coefficient �, defined as the
ratio between the tangential force F needed to slide surfaces
at velocity v and the normal load Fn applied on them: �
=F /Fn. From Amonton’s law, the friction coefficient is inde-
pendent of the apparent contact area of the sliding solids.
This holds for nominally rough surfaces �3� but not neces-
sarily for self-affine surfaces, where the roughness depends

on the length scale of observation. Since many real surfaces
show self-affine behavior over some length scales �23,24�, it
is important to know if Amonton’s law is modified in this
case. Several very detailed studies on this topic have shown
that the fractal character of the surface has very little effect,
or none at all, on the real area of contact. We show that the
earlier treatment of Greenwood and Williamson �3� can be
used even in the case of self-affine surfaces and calculate the
contact area between rough self-affine surfaces. We show
how both the area of real contact, and the friction coefficient
between them, depend on the roughness exponent � of the
surfaces. We find that the real area of contact Ar between a
plane and a self-affine fractal surface scales as Fn�Ar

� where
�= �4+3�� / �4+2��. For a self-affine surface, 0���1,
leading to 1���7 /6, in good agreement with recent nu-
merical results of Batrouni et al. �17�, and in line with other
recent work �16,18–21� predicting also an almost linear re-
lationship between the normal force and the real contact area
of the surface. We also find that the friction coefficient has a
weak anomalous dependence on the apparent contact area A0
through the roughening exponent, namely, ��A0

−�/4, which
in principle is measurable experimentally.

The study of friction at the microscopic level of the as-
perity has gained importance over the years, particularly with
respect to the field of nanotechnology. An understanding of
friction at this level is also necessary to make the link to the
global behavior of the asperities. Friction at the single-
asperity level is ideally explored by the friction force micro-
scope �FFM�, whose tip consists of only a few atoms
�7–9,27,28�. At low scanning velocities, FFM experiments
found that the tip can exhibit stick-slip behavior commensu-
rate with the periodicity of the substrate’s underlying lattice.
As the FFM measures friction force F under a constant load,
this gives the effective microscopic friction coefficient �micro
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as �micro�F under those conditions. That is, the FFM essen-
tially provides experimental access to the friction of a single
asperity, under weak loading, linear response conditions.

The situation can be studied using a simplified Tomlinson
model �29–32�, and a detailed analysis of thermal effects on
the stick-slip behavior, treated as a dynamic critical phenom-
enon �33–38�, shows that the friction force F decreases from
its optimal value of Fc at T=0, with a correction of the form
�6,39,40�

F − Fc � − T2/3 ln2/3�B
T

v
� , �1�

where F is the friction force, T is temperature, and v is the
scanning velocity. As noted above, the microscopic friction
coefficient �micro�F. The nonuniversal constant B depends
on the exact details of the setup �39�. We have shown before
that this result compares well to numerical simulations when
the FFM tip can be described by a simple Langevin equation
with a static periodic potential coming from the substrate.
We show in the present paper that this result also holds when
elasticity of the substrate, modeled as a ball-spring system, is
included, provided the substrate is sufficiently rigid.

The rest of the paper is organized as follows. Section II
shows the friction coefficient’s dependence on surface rough-
ness. In Sec. III theoretical and numerical calculations of the
friction force between a FFM and a substrate are presented.
Conclusions are summarized in Sec. IV.

II. CONTACT AND FRICTION BETWEEN ROUGH
SURFACES

Several experimental studies �see, e.g., Chap. 4 of Ref.
�5�. or Refs. �23,24�� have shown that surfaces often present
a self-affine character over several length scales. Hence, the
contact mechanics between rough surfaces has been the sub-
ject of several recent studies �15–22�. Knowledge of the con-
tact area between rough surfaces is the first step in the study
of friction on rough surfaces. However, it is often argued that
a fractal surface possesses asperities on all length scales so
that the usual treatments, based on the contact mechanics of
individual asperities with a surface �3�, are not valid. In con-
trast, here we consider the realistic case of a standard rough
surface. Such a surface is assuredly self-affine on large
length scales, but on small length scales such behavior is
modified by the presence of a small-length-scale ultraviolet
cutoff.

Consider a rough surface in contact with a flat plane. The
rough surface, of height h�x�, is assumed to be a self-affine
fractal in the range a�x�L. The length a is a physical
microscopic cutoff length, typically of the order of a few
nanometers, at which the fractal behavior breaks down. The
length scale L�A0

1/2 is the lateral size of observation, with
A0 is the apparent area of the surface. It is also possible that
the self-affine character is present only up to an upper length
scale �, of the order of a few micrometers. The surface is
characterized by a power spectrum in d dimensions

�	hk	2
 = 	2k−d−2�, �2�

where hk is the Fourier transform of the surface, � is the
roughness exponent, and �¯
 represents an average over the
statistical distribution of the interface �41�. In real space, the
self-affine structure is determined by the correlation function

��h�r + l� − h�r��
1/2 � l�. �3�

For ��1, the amplitude of the power spectrum can be ex-
pressed in terms of a length 	= �l
�1−� �42�. The total width
of the interface,

w = 	L� � l

1−�A0

�/2, �4�

depends on the apparent area of observation. The roughness
exponent must satisfy ��1 for the surface to be well de-
fined. Its value depends on the universality class of the phe-
nomenon �41�. For example, in the case of simple linear
roughening, �= �3−d� /2 in d �1�d�3� dimensions and
logarithmic roughness in three dimensions. For several other
common surfaces, the roughness exponent may be quite
large, 0.5���0.9, and w typically is of the order of a few
tens of nanometers for a lateral length scale of the order of 1
�m �5�. In most cases, however, the length l
�a, as shown
in Table I.

A possible starting point to obtain the contact area be-
tween the rough surface and the plane is the general formula
�43�

u�r� =� dr� Gik�r − r���k�r�� , �5�

where u are the displacements induced by the normal stress
�k over the surface r= �x ,y� and the Green’s function G�r�
�1 /r asymptotically. An early scaling analysis of Eq. �5�,
using a self-affine fractal surface on all length scales, pre-
dicted that the normal force Fn and the area of real contact
would be related as Fn�Ar

�1+��/2 �14�. However, in marked
contrast, a numerical solution of Eq. �5� by Batrouni et al.
�17� found Fn�Ar

1.1 for both �=0.6 and �=0.9. A detailed
analysis by Persson �15�, starting essentially from Eq. �5�,
but for a self-affine surface only over a limited range, shows
Fn�Ar unless the load is so large that the area of real contact
becomes similar to the nominal area, probably far above the
plastic threshold. The very weak dependence of the area of
real contact on the roughness exponent is further confirmed
by the multiscale analysis of Hyun et al. �18,19� and modi-
fied Green’s function methods �20,21�. These results point to
the fact that the self-affine nature of the surface has only

TABLE I. Numerical value of the length l
 for various values of
the total width w for an apparent area Aa=10�10 �m2, a rough-
ness exponent �=1 /2, and molecular cutoff length a=0.5 nm

w �nm� l
 �nm�  �109 m−1� A

5 0.0025 0.14 400 �m2

10 0.01 0.28 1.56 �m2

50 0.25 1.41 4 nm2
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little influence on the contact mechanics, contrary to natural
expectations.

This small effect of the self-affine surface is easily under-
stood by realizing that in contact mechanics the important
quantity is not necessarily the height itself or the height-
height correlations �19�, but rather the mass density, which is
essentially

��z� = �0��„z − h�r�…
 , �6�

where �0 is the bulk density, and ��u�0�=1 and ��u�0�
=0. This mass density should be used, rather than the asper-
ity height distribution usually considered in traditional treat-
ments of the problem.

For a self-affine surface with roughness exponent ��1,
the ratio w�L� /L→0 as L→0, meaning that the surface is
asymptotically flat and that there cannot be any long-range
correlations in the mass density �see also Ref. �22��. For an
interface with Gaussian fluctuations, it is straightforward to
show that ��z�=erfc�z /w�A0�� �44�, where w�A0��A0

�/2 is the
surface standard deviation of heights. In a general case, the
mass density, or, equivalently, the height distribution, is well
approximated asymptotically by the exponential form

��z� � �0e−z/w. �7�

The important point is of course that it has a finite range in
the direction perpendicular to the surface.

The average curvature of the rough interface is obtained
from = ���2h�2
1/2, written explicitly as �44�

2 = �
L−1

a−1

dk k3+d�	hk	2
 = a−2� l


a
�2�1−��

. �8�

Even though it depends on the short-distance cutoff, this is
also a well-defined quantity. For typical surfaces, 10−2�a
�O�1� and we can therefore think of the surface as a set of
N0�A0 /2 asperities with radius of curvature −1 ranging
from a few nanometers to a fraction of a micrometer.

It is then straightforward to use previous theories of con-
tact mechanics due to Greenwood and Williamson �3� for
rough surfaces. In this theory, the rough surface is composed
of many distinct asperities. The contact of each asperity with
the flat surface is treated within Hertz theory �45,46�, which
states that the contact area between the surface and the as-
perity is proportional to the ratio of the normal displacement
to the curvature �z−u� /, where u is the separation between
the two surfaces, z is the height of the asperity, and  the
curvature of the asperity. The normal force is proportional to
E�−1/2�z−u�3/2, where E� is the effective elastic modulus of
the surfaces �47�. With an exponent distribution of density,
all the standard results of the theory follow. If the total num-
ber of asperities on the surface is N0, the number of asperities
in contact is

N = N0e−u/w, �9�

and the total real contact area Ar and normal load Fn of all
the asperities in contact are

Ar = N0−1we−u/w = �w/�N , �10�

Fn = N0E��w3/�1/2e−u/w = E��w�1/2Ar. �11�

Since the curvature is a well-defined quantity, the number of
asperities is related to the apparent area of contact via N0
�A02, and the relation between the real area of contact and
the normal force can be established for different values of u.
In the limit u�w, the exponential term can be neglected and
NN0. Using Eq. �4� to express the width w in term of the
apparent area A0, the apparent and real areas of contact are
related through Eq. �10� as

A0 = A�Ar

A �2/2+�

, �12�

where the area

A = l

2� a

l

�2�2/x−1�

�13�

ranges between a few nm2 and several �m2 �see Table I�. In
this limit, the relation between the normal force and the real
area of contact is

Fn = E�A�Ar

A ��

, �14�

where the exponent �

� =
4 + 3�

4 + 2�
, �15�

For 0���1, the exponent 1���7 /6.
The width is itself related to the real contact area, so the

range of validity of this power-law regime is obtained self-
consistently as

u

w
= u�A

Ar
�x/2+�

� 1, �16�

meaning that large apparent and real surfaces of contact are
necessary. The parametric plot of Fig. 1 shows that the
power-law relationship between the real area and the force is
actually valid over a wide range of parameters. Deviations
from Eq. �14� occur only when u�a0 /Ar�2/�2+���1, in
which case we obtain Fn�Ar

�/2.
The weak dependence of � on �, and the range of values

for �, are in good agreement with numerical results of Ba-
trouni et al. �17�. Those authors found that Fn�Ar

1.1—that is,
�1.1, for both �=0.6 and �=0.9. It is, however, not in
agreement with the linear behavior obtained by Persson �16�
as well as by Hyun et al. �18,19� and Campana �20,21�. This
disagreement may come from the fact that the transverse
displacement of the surface must be carefully taken into ac-
count during the contact process. Large system sizes must
also be considered in order to deal with such small expo-
nents. Nevertheless, our result, which is obtained from the
finite range of the asperity height distribution, again points to
the weak effect of a fractal surface on the real area of con-
tact.

A simple argument may then be used to estimate the static
coefficient of friction. Assuming that most of the asperities
are in a state of incipient plastic flow, and that the previous
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result, based on linear elasticity is not drastically modified,
the lateral force necessary to displace the asperities is F
��cAr where the yield stress is �c �4�. Then, using Eqs. �9�
and �10�, we find that the friction coefficient ��F /Fn de-
pends on the width of the interface: ��w−1/2. Immediately,
then, from the dependence of the width on the apparent area
of contact in Eq. �3�, we obtain the anomalous dependence of
the friction coefficient on the apparent area of contact,

��A0� � A0
−�/4. �17�

This transport-coefficient anomaly is measurable experimen-
tally, as well as numerically, provided that the load depen-
dence on the area of contact is also taken into account �20�.
In any case, this is a very weak dependence; as mentioned
above, on general grounds ��1.

At fairly large loads, plasticity leads to an increase in the
contact area over time. Heslot et al. �2� have shown that for
large load values ��1 N� but very small pulling velocities
�v�1 �m /s�, the friction coefficient �=��v�, together with
stick-slip motion caused by the plastic relaxation of the con-
tact. On the other hand, at very small loads, the stick-slip
phenomenon, caused solely by interatomic forces between
the asperities and the surface periodic potential, occurs �8�.
We now concentrate on this case.

III. STICK-SLIP BEHAVIOR AND THERMAL
ACTIVATION

A friction force microscope provides direct access at the
atomic level to friction. As such, it essentially probes the
friction of a single asperity, under weak loading, linear re-
sponse conditions. In this section, we present the general
stick-slip phenomenon in atomic friction and introduce a
simple one-dimensional model to calculate atomic-scale fric-

tion. For the measurement probe, we refer explicitly to the
FFM, modeled as a tip coupled elastically to a moving can-
tilever �7–9�.

In a typical experimental situation, the FFM is dragged in
contact mode across a surface at constant velocity, and the
friction force F needed for this continuous displacement is
recorded as a function of R, the displacement of the cantile-
ver. The occurrence of stick-slip behavior is then seen as a
series of triangular force jumps �Fig. 2� with the periodicity
of the substrate lattice spacing. As noted above, this force is
proportional to the microscopic friction coefficient �micro.

This behavior can be understood from an analysis of the
energetics of the tip. If the tip of a FFM, put close to a
substrate, its global energy is the sum of two terms: the lat-
tice surface potential and the elastic coupling between the tip
and the cantilever. A typical superimposition of these two
potentials is shown in Fig. 3. Most of the time, the tip re-
mains static at potential minima �see Fig. 3�a��. As the can-
tilever is displaced, the elastic force F increases while the
potential barrier decreases �see Fig. 3�b��. At low tempera-
tures, the tip barely moves until the potential barrier van-
ishes, at which point it jumps to the next potential minimum,
thus causing a sudden decrease in the friction force �see Fig.
3�c��. At nonzero temperature, thermal fluctuations make it
possible for a jump to occur before the barrier vanishes,
when it becomes comparable to kBT.

A. Analysis

For commensurate surfaces, we treat the tip as a point
particle, with coordinate r= �x ,z� �48�, subject to an effective
substrate surface potential U�r�, which possesses the period-
icity of the substrate, U�x+a ,z�=U�x ,z�, where a is the lat-
tice constant of the surface. Sinusoidal functions are com-
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100

101

102

103

104

105

106
F

n/
E

*A

uκ=0.001

uκ=15

FIG. 1. Relation between the normal force and the real area of
contact for a surface characterized by �=0.5 and values of the
dimensionless parameters u=10−3 �lowest curve� 10−2, 1, 5, 10,
and 15 �highest curve�. The slope of the lines corresponds to the
exponent � �Eq. �15��, with only very weak deviations at small
loads.

cRcR − a

F

R

Fm

FIG. 2. Idealized friction force measured during a stick-slip
event at zero temperature. As the support moves away, the force
increases linearly until a position Rc �to which corresponds a maxi-
mal force Fm�. At this point, the energy barrier opposing the motion
of the tip vanishes, the tip is released, and the force decreases sud-
denly. At nonzero temperature, thermal activation can cause transi-
tions for positions R�Rc. The position at which this transition oc-
curs as well as the maximal force registered between the events are
then stochastic quantities whose distribution is related to Eq. �28� of
the text.
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monly used to model this part of the surface potential
�11,30,31,39�. In the special case of a FFM operating under
constant load, the normal force is fixed and the z coordinate
drops out of the problem. The second potential is the elastic
coupling between the tip and the cantilever, K�R ,x�, where R
is the coordinate of the cantilever support �30,31,39�.

The global energy of the tip is thus �see Fig. 3�a��

E�R,x� = U�x� + K�R,x� . �18�

In this section, we keep U�r� and K�R ,x� as general func-
tions. Specific forms appropriate to the case of a FFM on a
surface will be given in the next section.

For a given support position R, the equilibrium position of
the tip, denoted xeq�R�, is obtained by

�E�R,xeq�R��
�x

= 0, �19�

and the friction force measured experimentally corresponds
to

F = � �K�R,x�
�x

�
xeq

� k̃R . �20�

The second part of Eq. �20� is a linear approximation to the

friction force. It introduces the effective elastic constant k̃
which accounts for the effect of the potential U�x� on the

elastic force of the FFM �39�. The effective constant k̃ cor-
responds to the slope of the friction force in the sticking part
of a typical sawtooth figure �see Fig. 2�.

The critical point at which the energy barrier vanishes
corresponds to an inflection point of the global potential. For
this position of the support Rc �to which corresponds an equi-
librium position of the tip xc�, both the first and second de-
rivatives of E�R ,x� at xc are zero,

�E�Rc,xc�
�x

= 0 �21�

and

�2E�Rc,xc�
�x2 = 0. �22�

At nonzero temperature, the tip is thermally activated over
the energy barrier to the next potential minimum before R
reaches Rc. Since we expect this actual jump to take place on
time scales much faster than the typical time spent in a po-
tential well, we can describe this transition by the Kramers
rate �49� in the potential corresponding to the instantaneous
position R,

�−1�R� =
�2

2��
e−	E/kBT, �23�

where � and 	E correspond, respectively, to the effective
oscillation frequency and barrier height, and � is the dissipa-
tion coefficient. Due to this exponential behavior, the great-
est probability for a transition to occur is in the region
	E�kBT. In this case, Eq. �A6� shows that, to lowest order
in the bias f �1− �R /Rc��1, the energy barrier and oscilla-
tion frequency of a general potential of the form E�R ,x� are

	E = Eefff
3/2 �24�

and

� = �efff
1/4, �25�

where the constants Eeff and �eff, given in Eqs. �A7� and
�A11�, are expressed in terms of derivatives of E�R ,x� at the
critical position. The effective energy barrier is in general a
complex interplay between the substrate elastic energy, the
structure of the tip, and the normal load applied to the tip and
can be measured experimentally �9–11�.

For a support moving at constant velocity, R�t�=vt. The
probability that a transition has not taken place at time t is
�35,37,39�

x = x

E(R, x)

R = Rc

c

T = 0 K
v

x

R = 0

E(R, x)

v

E(R, x)

0 < R < Rc
T > 0 K

v

x < xc

(c)

(a)

(b)

FIG. 3. Schematic plots of the potential function E�R ,x� vs x,
the position of the tip, for different positions R of the support.
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W„R�t�… = exp − �
t0

t

�−1�R�t���dt�. �26�

Changing the variable from t� to R, the distribution of the
support’s position at which a transition occurs, i.e., Rm, is
then obtained as

P�Rm� = −
dW�R�

dR
�27�

=
3

2
Xf�1/2 exp�− f�3/2 − Xe−f�3/2

� , �28�

where f�= �Eeff /kBT�2/3f and

X =
2

3

�eff
2

2��

Rc

v
kBT

Eeff
. �29�

From the distribution of the transition positions P�Rm�, we
calculate the average transition position �37�

�Rm
 = Rc − Rc� kBT

Eeff
�2/3

g�X� , �30�

where the function g�X�� ln2/3 X+O�1 / ln X� in the limit
X�1 �35,37� and g�X��X+O�X2� in the limit X�1.

With the linear approximation Eq. �20� between F and R,
it is straightforward to calculate the average lateral force as
the integral of the instantaneous force over a cycle of the
stick-slip motion, which yields �51�

F = Fc − 	F�T��ln X�v,T��2/3, �31�

where the constants

Fc = k̃�Rc −
a

2
� , �32�

	F = k̃Rc� kBT

Eeff
�2/3

, �33�

and X�v ,T� is presented in Eq. �29�. As noted above, this is
proportional to �micro, and is, in essence, the friction of a
single asperity—under weak loading and linear response
conditions. The incoherent average of many such asperities
gives the friction coefficient, albeit under those quite re-
stricted conditions.

As the velocity of the support is increased, the tip spends
less and less time in the minima of the potential wells. When
a velocity v�, defined by X�v� ,T�, is reached, thermal fluc-
tuations do not act on a time scale sufficiently fast to activate
the tip and the friction force reaches the static zero-
temperature limit as Fc−F�T5/3 /v. Once F=Fc, the friction
force remains at this plateau, as already seen experimentally
�9�. The behavior continues until viscous friction Fv=M�v
dominates. Comparing the viscous and potential forces
yields the velocity vc at which this occurs:

vc =
�U�xc�/�x

M�
. �34�

Note that the ratio v� /vc is independent of �.

The maximal force Fm between tip and cantilever before a
transition occurs decreases from its optimal value at T=0 and
becomes a stochastic quantity �39�. Assuming Fm� k̃Rm, its
distribution is obtained directly from Eq. �28�. We show in
Sec. III B that there is a good agreement between Eqs. �31�
and �28� and the numerical simulations. The exponent 2/3 in
Eq. �31� comes from the nonlinear characteristic of Eqs. �24�
and �25�. As we show in the Appendix, those nonlinear char-
acteristics are universal for problems with transition close to
the critical position, and do not depend on any particular
form of the global energy.

B. Numerical model

To test the method developed in the last section, we set up
an atomistic model to simulate the operation of a FFM. A
schematic graph of the model is shown in Fig. 4. The tip,
with coordinate r= �x ,z�, and its coupling to the cantilever
are modeled by a single atom attached to a moving support.
The support of the cantilever has coordinates R= �R ,Z�. For
operation under constant load, the separation between the
support and the tip in the normal direction, Z−z, remains
constant at all times. The support moves horizontally at con-
stant velocity v, R=vt. The support and the tip are connected
by a spring with spring constant k, and the elastic energy
between the tip and the support is

K�R,x� =
1

2
k�R − x�2 �35�

We set the numerical value k=0.93 N /m, typical of experi-
mental setups �8,9,39�.

The substrate is modeled using a ball-spring model �50�.
Twenty atoms with coordinates ri= �xi ,zi� and equilibrium
position ri,0= �xi,0 ,z0� are connected with springs and satisfy
periodic boundary conditions. The original positions of these
atoms are xi,0 and zi,0 and they are connected to a rigid sec-
ond layer. The atoms are held in their original positions with
harmonic potentials described by spring constants kxz and kzz,
while the spring constant of the lateral springs between the
atoms is kxx. The elastic energy of the substrate atoms is

Vsub��ri�� = �
i

1

2
kxz�xi − xi,0�2

+ �
i

1

2
kzz�zi − zi,0�2 + �

i

1

2
kxx�xi+1 − xi − a�2, �36�

where the lattice constant a=0.4 nm. Different values of kxx,

FIG. 4. Schematic diagram of the numerical model. FFM tip is
modeled with a tip coupled elastically to a support and the substrate
is modeled with a ball-spring model.
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kxz, and kzz correspond to substrates with different elastic
moduli. In the x direction �the scan direction� the shear
modulus G=kxz /a, while the compressibility is described by
the modulus Bx= �2kxx+kxz�. The bulk compressibility in the
z direction Bz=kzz /a. It is not our intention to describe a
surface in all its details, but rather to consider the effect of
the elasticity of a substrate on the theoretical prediction of
Eq. �1�. Equation �36� then defines the simplest model that
allows us to interpolate between a completely rigid and a
very soft substrate.

The interaction potential between the tip and substrate
atoms is modeled using an exponential repulsive potential,

Vint�r,�ri�� = �
i

V0�er0/	r−ri	 − 1� , �37�

where 	r−ri	=��x−xi�2+ �z−zi�2 is the displacement between
the tip and the substrate atom i. We set V0=0.049 eV and
r0=2a.

A common alternative for the interaction potential is the
Lennard-Jones potential �50�. Since FFMs are typically op-
erated in contact mode, the tip and substrate separation is
small and the force between them is repulsive. Long-range
van der Waals attractive forces are trivial in this situation.
The choice between the exponential repulsive potential and
Lennard-Jones potential will not alter the final results. An-
other potential in the system is the potential due to the load,
which is Fn�z−z0� �50�. The total potential energy of the
whole system is then

E = K�R,x� + V�r,�ri�� + Fn�z − z0� + Vsub�r,�ri�� . �38�

The operation of the FFM under constant load uses a feed-
back loop to keep the separation between the tip and canti-
lever constant. We thus allow the tip to follow the surface
smoothly in the vertical direction by adjusting the coordinate
z such that the normal force

Fn = −
�Vsub

�z
�39�

remains fixed at all times.
The local deformations of the substrate spread at the

speed of sound ��104 m /sec�, and so the typical time scales
associated with the substrate �10−13 sec. In contrast, the tip
of the mass is several orders of magnitude greater that the
mass of the atoms in the substrate, with much larger time
scales ���−1; see Eq. �25��. Typical scans are over several
lattice spacings, at velocities ranging from a few nm/sec to
the range of �m /sec, and a full molecular dynamics simula-
tion, extending over a time �10−3 sec that would encompass
both the time scales of the substrate and tip is thus unrealis-
tic. However, on the time scales relevant to the tip motion,
the energy transferred from the tip to the substrate is dissi-
pated almost instantly, and the fast motion of the substrate
can be incorporated phenomenologically into a Langevin
equation for the lateral motion of the tip alone �52,53�:

M
d2x

dt2 + M�
dx

dt
− k�R − x� − fx = ��t� , �40�

where M is the effective mass of the tip �chosen to be M
=8.7�10−12 kg�. The fast degrees of freedom of the sub-
strate are present through the dissipation coefficient � ��
=8.9�105 sec−1� and the random noise �, satisfying the
fluctuation-dissipation relation ���t���t��
=2M�kBT
�t− t��,
where the angular brackets denote an average, and kB is Bolt-
zmann’s constant. The total lateral force applied on the tip by
the substrate is

fx = −
�Vint

�x
= �

i

V0er0/ri
r0

ri
2

x − xi

ri
. �41�

The slow motion of the substrate is obtained by letting the
substrate totally relax to equilibrium at each time step, i.e.,
for a given position r of the tip, the position of each atom of
the substrate ri is set by

�Vint

�xi
+

�Ksub

�xi
= 0,

�Vint

�zi
+

�Ksub

�zi
= 0. �42�

The effect of the thermal fluctuations of substrate atoms
around their equilibrium positions was tested and we found
that its impact is negligible �54�.

C. Comparison of analysis and numerical results

We study the influence of the elasticity of the substrate,
with comparison to the theoretical model of Sec. III A, by
adjusting the elastic constants of the substrate kxx, kxz, and kzz
to produce different values of shear strain �=0.01, 0.05, and
0.1. This last value is just below typical criteria for surface
melting �55�.

Equation �40� is simulated using Ermak’s algorithm �52�.
The parameters used in the calculations are shown in Table
II. For each temperature and velocity, the scanning distance
is 50 lattice spacings and time steps are between 0.01 /� and
0.07 /�. The simulations are done at several temperatures and
velocities for each substrate. For the hard substrate ��=0.01;
see Fig. 5�b��, we use four different temperatures, 133, 213,
293, and 373 K, with scanning velocities 5 nm/sec�v

TABLE II. Values of load and elastic constants chosen for the
simulations. The basic unit of the elastic constant is k=0.93 N /m,
related to the elasticity of the FFM �Eq. �35��. The shear strain �
corresponds to the maximal displacement of the substrate atoms
under the motion of the tip and characterizes the softness of the
substrate.

� FN �nN� kxx�kxx /k� kxz �kxz /k� kzz �kzz /k�

0.01 2.2 120 160 400

0.05 1.6 12 16 40

0.1 1.6 4 4 12
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�256 �m /sec. For the softer substrates, the simulations
must be performed at lower temperatures. For the �=0.05
substrate �Fig. 5�c��, we use 53, 133, 213, and 293 K with
scanning velocities 5 nm /sec�v�64 �m /sec. Finally, for
the softest substrate ��=0.1; Fig. 5�d��, we use 53, 73, 93,
and 133 K, with 5 nm /sec�v��m /sec. Smaller loads are
used for the softer substrate, so as to obtain equivalent in-
dentation of the surface.

The general results show an increase of the friction force
with velocity and a decrease with temperature. At high ve-
locities, stick-slip behavior disappears and linear friction F
�M�v starts to dominate. This corresponds to the sharp in-
crease in Figs. 5�b�–5�d�.

In order to apply the method developed in Sec. III A to
the numerical model of Sec. III B, we need to know the
effective surface potential U�x�, introduced in Eq. �18�. This
is not trivial since the interaction potential Vint is a function
of both x and z, with z constantly changing to maintain a
constant load. However, the collective effect of the substrate
and load is included in Eq. �40�, and we can associate

�U�x�
�x

� − fx„x,z�x�,�ri�x��… , �43�

where the transverse position of the tip and the position of
the substrate are obtained from Eqs. �39� and �42�. This
quantity can be obtained numerically from a simulation of

Eq. �40� at T=0 �see Fig. 6�. Once fx is known, higher-order
derivatives of U�x� are obtained by numerical differentiation.
The critical position xc is found from Eq. �21�,

�2E�Rc,xc�
�x2 =

d2U�xc�
dx2 =

dfx

dx
= − k , �44�

while the critical position of the support is obtained from Eq.
�22�,

�E�Rc,xc�
�x

=
dU�xc�

dx
− k�Rc − xc� = 0. �45�

The effective elastic constant between the tip and the canti-
lever, k̃ is extracted from the sawtooth graphs �for instance,
Fig. 5�a��, and Fc can be then be obtained from Eq. �32�
Finally, the numerical evaluation of the third derivative of
U�x� yields Eeff and �eff. Then the coefficients in X and 	F
can be calculated.

We define

A � k̃Rc� kB

Eeff
�2/3

�46�

and

B �
2

3

�eff
2

2��
Rc

kB

Eeff
, �47�

and rewrite Eq. �31� as

F = Fc − AT2/3 ln2/3�B
T

v
� , �48�

which is proportional to the microscopic friction coefficient.
The numerical results obtained in this way for the various

substrates are shown in Table III. This allows us to scale the
data according to Eq. �31�, with the result shown in Fig. 7.
For these figures, we keep only temperatures and velocities
that are clearly within the stick-slip regime. The collapse of
all data shows clearly that Eq. �31� gives an adequate de-
scription of the stick-slip process even when local elasticity
of the substrate is present. Note that the data points for the
soft substrate ��=0.1� at 133 K and 5 and 10 nm/sec do not
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FIG. 5. �a� Typical stick-slip behavior of the instantaneous fric-
tion force as the support is moved at velocity v=25 nm /sec for a
temperature T=293 K on hard substrate ��=0.01�. �b� shows aver-
age friction force for different velocities at different temperatures
for the same substrate. Squares, diamonds, up triangles, and down
triangles correspond, respectively, to temperatures T=133, 213,
293, and 373 K. �c� shows average friction force for different ve-
locities at different temperatures for mid-soft substrate ��=0.05�.
Circles, squares, diamonds, and up triangles correspond, respec-
tively, to temperatures T=53, 133, 213, and 293 K. �d� shows av-
erage friction force for different velocities at different temperatures
for soft substrate ��=0.1�. Circles, pluses, stars, and squares corre-
spond, respectively, to temperatures T=53, 73, 93, and 133 K. The
units of velocity v are nm/sec.
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FIG. 6. Resistance force applied on the tip by the substrate
atoms for three different substrates. Solid, dashed, and dot-dashed
lines correspond, respectively, to hard ��=0.01�, mid-soft
��=0.05�, and soft ��=0.1� substrates.
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scale well with the rest of the data. This is because soft
substrates require a considerably smaller normal load than
harder substrates. The small normal load leads to a small
effective potential barrier. Starting from high temperatures
where kBT is comparable to the effective potential barrier, the
tip is no longer confined to the potential minimum. So for
temperatures higher than 93 K the transition is not confined
to the small regime around the critical position, which means
Eq. �31� does not apply.

We also studied the distribution of force maxima from Eq.
�28�, under the assumption Fm= k̃Rm. For hard ��=0.1 strain�
substrate at 293 K, we calculated the force maxima distribu-
tion for velocities v1=25 nm /sec and v2=1 �m /sec. For
these choices, X�v1�=3.6�102 and X�v2�=8.9. Other param-
eters obtained from the numerical simulations and used in
the theoretical calculations are Eeff=0.6 eV and Rc
=0.86 nm. The comparison of theoretical and numerical re-
sults is shown in Fig. 8. The theoretical and numerical results
agree very well at low velocities although deviations are seen
at larger velocities �1 �m /sec�. These deviations are be-
cause linear friction �F=M�v� becomes comparable to the
stick-slip friction �F given by Eq. �31�� at large velocity.

IV. CONCLUSIONS

In this paper, we studied the dependence of the friction
coefficient � on the surface roughness. We pointed out the
importance of using the mass density and explained previous
numerical results concerning the dependence of forces on the
real area of contact for rough surfaces. As well, we have

made a prediction of a weak anomaly in the friction coeffi-
cient, which is dependent on the apparent area of the rough
surface. We also developed a method to calculate the atomic
friction based on thermally activated stochastic processes. A
numerical model was set up to test our analytical results. The
results in this paper and our previous work �39� show that
this nonlinearly logarithmic dependence on scanning veloc-
ity and temperature is universal. It does not depend on the
particular form of surface potential in the model nor on the
substrate’s elastic properties, and should be experimentally
observable on different substrates. In order to study thermal
effects, we used a Langevin equation to describe the ther-
mally activated motion of the FFM tip. This method allowed
us to simulate time scales ranging from a few seconds to a
few minutes, which match the experiment time scales. Fi-
nally, the simplified Tomlinson model we used in this paper
is very successful in probing problems related to stick-slip
motion in the lateral direction and can also be used to study
the relationship between the friction and normal load �9�,
allowing one to calculate the effective microscopic friction
coefficient �micro�F. To test those results experimentally, it
would be particularly valuable to consider an extended range
of temperatures and velocities, obtaining not only the depen-
dence of the friction force on those quantities, but the distri-
bution function of such forces as well. The parameters ex-
tracted from such comparisons provide direct, feasible, and
simple access to the fundamental description of friction at
the atomic scale.
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TABLE III. Numerical values of the parameters obtained from
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APPENDIX

In this appendix, we show how Eqs. �24� and �25�, lead-
ing to Eq. �1�, can be understood in terms of a generic po-
tential E�R ,x�. We only assume that the potential consists of
a metastable minimum and that R is a parameter that controls
the height of the potential barrier. At R=0, the local mini-
mum and maximum of the potential are denoted by x�

0 ob-
tained from the solution of

� �E�0,x�
�x

�
x

�
0

= 0. �A1�

The barrier height for thermal activation is then 	E0
=E�0,x+�−E�0,x−�. For nonzero but small values of R, the
barrier height can be found from a simple Taylor expansion
around R=0 and x�

0 .

	E�R� = 	E�0� + R� �E�0,x+
0�

�R
−

�E�0,x−
0�

�R
� �A2�

is linear in the control parameter R. However, this expansion
is valid only if the second term in Eq. �A2� is much smaller
than the unperturbed barrier height 	E0. As a renormaliza-
tion group analysis clearly shows �33�, this “linear response”
is not valid in the cases where the thermally activated behav-
ior takes place when the barrier is extremely small.

Instead, the expansion of the potential must be made with
respect to the point where 	E=0. A vanishing energy barrier
corresponds to an inflection point of the potential E�R ,x�;
this point is located at the position xc, given by Eqs. �21� and
�22�. The spinodal point of the potential, Rc, corresponds to
the of the control parameter for which 	E�Rc�=0. Denoting
f =1−R /Rc, we look for the new minimum and maximum by
Taylor expansion in the proximity of Rc and xc:

0 =
�

�x
E„Rc�1 − f�,xc � 
x…

=
�E�Rc,xc�

�x
− fRc

�2E�Rc,xc�
�R � x

� 
x
�2E�Rc,xc�

�x2 +
1

2

x2�3E�Rc,xc�

�x3 + ¯ �A3�

where 
x=x−xc. The first term of the expansion as well as
the term of order O�
x� vanish from the definition of the
spinodal point and terms of higher order than O�Rcf� can be
omitted from the calculation. The displacement 
x�O�f1/2�,
or more precisely


x2 = 2fRc� �2E�Rc,xc�
�R � x

�� �3E�Rc,xc�
�x3 �−1

, �A4�

or, in the specific case of a potential of the form Eq. �18�,


x2 = 2fRc� �2K�Rc,xc�
�R � x

�� �3U�xc�
�x3 �−1

. �A5�

The barrier height is thus

	E�f� = E„Rc�1 − f�,xc + 
x… − E„Rc�1 − f�,xc − 
x…

� − 2fRc
x
�2E�Rc,xc�

�R � x
+

1

3

x3�3E�Rc,xc�

�x3 � Eefff
3/2.

�A6�

Again specializing to the case of Eqs. �18� and �35�

Eeff =
4�2

3
k3/2Rc

3/2� �3U�xc�
�x3 �−1/2

. �A7�

The oscillation frequency in the local minimum and in the
“inverted” potential are also needed for a complete determi-
nation of the Kramers rate �49�. Up to O�f1/4�, the oscillation
frequency of the potential, ��f ,xc+
x�=��f ,xc−
f�=��f�,
with

�2 =
1

M

�2E„Rc�1 − f�,xc − 
x…

�x2 �A8�

=
1

M
� �2E�Rc,xc�

�x2 − fRc
�3E�Rc,xc�

�R � x2 − 
x
�3E�Rc,xc�

�x3 + ¯� .

�A9�

However, since 
x�O�f1/2�, to lowest order,

�2 � −

x

M

�3E�Rc,xc�
�x3 �A10�

and ���efff
1/4, where

�eff
2 = −

1

M
�2k�1/2Rc

1/2� �3U�xc�
�x3 �1/2

. �A11�
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